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Abstract

The objective of the present paper is to find a semi-analytical axisymmetric solution for steady penetration of a rigid
cone into pressure-dependent plastic material obeying the double-shearing model. As expected, the solution is singular
near the maximum friction surface. It is important to mention that the singularity is not due to the geometry of the
problem but the friction law. The type of the singularity is the same as in plane-strain solutions based on the dou-
ble-shearing model and in classical plasticity. This allows for calculating the strain rate intensity factor. The solution
is illustrated by a numerical example.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Steady penetration of a rigid cone or wedge into a medium belongs to a group of classical plane-strain
and axisymmetric problems in plasticity that also includes compression between parallel plates, flow
through channels and other similar problems. The main assumption accepted in all these solutions is that
the orientation of the principal stress depends on a single coordinate only. Solutions for plane-strain and
axisymmetric penetration into various plastic media have been obtained by Fleck and Durban (1991),
Durban and Rand (1991), Durban and Fleck (1992) and Durban (1999). These studies have focused on
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the singular behavior of solutions in the vicinity of the apex. In the present paper steady penetration of a
rigid cone with the rough surface into rigid/plastic material obeying the double shearing model of pressure-
dependent plasticity is considered. A solution to an analogous plane-strain problem has been obtained by
Alexandrov and Lyamina (in press). The double-shearing model for granular materials under plane-strain
conditions has been proposed by Spencer (1964). The systems of equations for axisymmetric and three-
dimensional deformations have been given in Spencer (1982). The model is based on the Coulomb–Mohr
yield condition and the assumption that deformation occurs by shear on the characteristic curves of stress
equations consisting of the yield condition and the equilibrium equations. It does not include the normality
rule but includes the incompressibility equation. Another important property of the model is that the stress
characteristics coincide with the velocity characteristics. A number of analytical and semi-analytical plane-
strain solutions based on the double-shearing model generalizing the corresponding solutions in classical
plasticity have been obtained by Pemberton (1965), Marshall (1967), Spencer (1982), Alexandrov and
Lyamina (2003). All of these solutions lead to singular velocity fields in the vicinity of friction surfaces
where the maximum friction law is adopted. It is important to note that this type of singularity is quite dif-
ferent from that emphasized in Fleck and Durban (1991), Durban and Rand (1991), Durban and Fleck
(1992), Durban (1999) and Papanastasiou et al. (2003). The latter is caused by the geometry of the problem
and occurs in the vicinity of the apex, whereas the former is caused by the maximum friction law and occurs
in the vicinity of the friction surface. The maximum friction law postulates that a characteristic direction (in
the case of the double shearing model the characteristic directions for stress and velocity equations coin-
cide) is tangent to the friction surface. In the case of plane-strain deformation, it has been shown in
Alexandrov and Lyamina (2002) that the singular solutions occur near friction surfaces where an envelope
of characteristics coincides with such a surface. There is no general result on singular solutions for axisym-
metric flows of materials obeying the double-shearing model. However, a solution for flow through an infi-
nite converging channel shortly described in Spencer (1982) shows that this particular velocity field is
singular. Other solutions for axisymmetric deformation of materials obeying the double-shearing model
are given in Spencer (1983, 1984, 1986). However, these solutions do not involve the maximum friction
law. In particular, in Spencer (1984) steady penetration of a rigid cone with a frictionless wall has been stud-
ied. In the present paper, the same problem with friction is solved, assuming the maximum friction law at
the cone surface. An essential difference between these formulations is that in Spencer (1984) a face regime
on the yield surface occurs whereas the present solution requires an edge regime. The latter solution shows
that the velocity field is singular near the maximum friction surface and the type of singularity is the same as
in plane-strain solutions based on the double-shearing model (Alexandrov and Lyamina, 2002) and in arbi-
trary flows of classical plasticity (Alexandrov and Richmond, 2001).
2. Statement of the problem

A rigid cone is penetrating an incompressible pressure-dependent plastic solid under axisymmetric con-
ditions. End effects are neglected. Without loss of generality, it is possible to assume that the cone is
motionless whereas the material moves with a velocity U as shown in Fig. 1. It is convenient to introduce
a spherical coordinate system rhu with its origin at the cone apex. Then, the surface of the cone is defined
by the equation h = h0. It is assumed that there exists a rigid/plastic boundary defined by the equation
h = hp. The value of hp should be found from the solution. The solid obeys the double-shearing model
(Spencer, 1982). The model includes the Coulomb–Mohr yield condition. In the case of axisymmetric defor-
mation, several regimes on this yield condition described in Spencer (1982) are possible. For the problem
under consideration, the appropriate regime corresponds to point F (Fig. 2) and is defined by the following
equations:



Fig. 1. Notation for steady penetration by a rigid cone.

Fig.
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2. Coulomb–Mohr yield hexagon for axially symmetric stress state. r1 and r2 are the principal stresses in a meridian plane.
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ðrrr þ rhhÞ sin/þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrrr � rhhÞ2 þ 4r2

rh

q
¼ 2c cosu

2ruu ¼ rrr þ rhh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrrr � rhhÞ2 þ 4r2

rh

q ð1Þ
where rrr, rhh, ruu and rrh are the components of the stress tensor in the spherical coordinate system, c is
the cohesion and / is the angle of internal friction. To obtain the closed form system for stress, Eqs. (1)
should be complemented with the equilibrium equations
r
orrr

or
þ orrh

oh
þ 2rrr � rhh � ruu þ rrh cot h ¼ 0

r
orrh

or
þ orhh

oh
þ 3rrh þ ðrhh � ruuÞ cot h ¼ 0

ð2Þ
The velocity equations given in Spencer (1982) can be rewritten in the spherical coordinates in the form
r
our
or

þ ouh
oh

þ 2ur þ uh cot h ¼ 0 ð3Þ

ðcos 2wþ sin/Þ our
oh

þ rðcos 2w� sin/Þ ouh
or

� ðcos 2wþ sin/Þuh � r
our
or

� ouh
oh

� ur

� �
sin 2w

þ 2 sin/uh
dw
dh

¼ 0 ð4Þ
Here (3) is the incompressibility equation and w is the angle which the axis corresponding to the maximum
principal stress in a meridian plane makes with the r-direction. Since the flow is steady w is independent of
the time. Also, by assumption, w is independent of r. These facts have been taken into account to derive Eq.
(4) from the general equation given in Spencer (1982). Eq. (4) ensures that the deformation occurs by two
simultaneous superimposed shearing deformations on the characteristics of the stress equations.

The surface of the cone is rough, and the maximum friction law is adopted there. In the case under con-
sideration, this law reads
w ¼ ww ¼ p
4
þ /

2
ð5Þ
at h = h0. Eq. (5) states that the friction surface (line in a meridian plane) coincides with a characteristic
direction of the system of Eqs. (1) and (2), and (3) and (4).

The velocity boundary condition on the cone surface, h = h0, is
uh ¼ 0 ð6Þ

The velocity field is assumed to be continuous across the rigid/plastic boundary, which is not a character-
istic. Therefore,
ur ¼ U cos hp and uh ¼ �U sin hp ð7Þ

at h = hp.
3. Stress solution

With the use of the standard substitution
rrr ¼ �p þ q cos 2w; rhh ¼ �p � q cos 2w; and rrh ¼ q sin 2w ð8Þ
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where
p ¼ � 1

2
ðrrr þ rhhÞ; q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrrr � rhhÞ2 þ 4r2

rh

q
; q ¼ p sin/þ c cos/ ð9Þ
Eq. (1)1 is satisfied automatically and Eq. (1)2 transforms to
ruu ¼ �p þ q ð10Þ
Substituting Eqs. (8)–(10) into (2) gives
� ð1� sin/ cos 2wÞ
sin/

o ln q
o ln r

þ sin 2w
o ln q
oh

þ 2 cos 2w
dw
dh

þ 3 cos 2w� 1þ sin 2w cot h ¼ 0

sin 2w
o ln q
o ln r

� ð1þ sin/ cos 2wÞ
sin/

o ln q
oh

þ 2 sin 2w
dw
dh

þ 3 sin 2w� ð1þ cos 2wÞ cot h ¼ 0

ð11Þ
These equations are compatible if
ln
q
c
¼ A ln

r
R
þ QðwÞ ð12Þ
where A and R are constant. Substituting (12) into (11) it is possible, after some algebra, to obtain the fol-
lowing equations for w and Q:
2 sin/ðsin/þ cos 2wÞ dw
dh

� Acos2/þ sin/ sin 2wð1� sin/Þ cot h

þ sin/ð3 cos 2w� 1� sin/ cos 2wþ 3 sin/Þ ¼ 0 ð13Þ

dQ
dw

½A cos/ cot/� sin 2wð1� sin/Þ cot h� ð3 cos 2w� 1� sin/ cos 2wþ 3 sin/Þ� � 2A sin 2w

� 2 sin/ sin 2wþ 2 sin/ð1þ cos 2wÞ cot h ¼ 0 ð14Þ
Eq. (13) should be solved numerically with the boundary condition (5). It is seen from (13) that the coef-
ficient of the derivative vanishes at w = ww. The solution significantly depends on whether or not the deriv-
ative dw/dh reduces to the expression 0/0 at w = ww. It follows from (13) that the latter is possible if and
only if
A ¼ A1 ¼ tan/ð1� sin/Þ cot h0 � sin/ ð15Þ

The special case A = A1 is excluded from consideration. At arbitrary A not equal to A1 expanding the coef-
ficients of (13) in a Taylor series in a vicinity of the point w = ww and h = h0 results in
ðw� wwÞ
dw
dh

¼ C
2

ð16Þ
where
C ¼ 1

2
½cot h0ð1� sin/Þ � cot/ðAþ sin/Þ� ð17Þ
Therefore, in a vicinity of the point h = h0 the solution to Eq. (13) can be represented in the following form:
w ¼ ww �
ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
h� h0

p
ð18Þ
It follows from this equation that CP 0 and, then, from (17) that A 6 A1.
Because of the nature of the problem, there is no natural boundary condition for Eq. (14). However, in

general rhh must be negative on the friction surface. Therefore, using (5) it is possible to find from (8) that
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q
c
>

1

cos/
ð19Þ
at h = h0. Obviously, the condition (19) is not satisfied on the entire friction surface, unless A = 0. For, it
follows from (12) that q ! 0 as r! 1 if A < 0 and q ! 0 as r! 0 if A > 0. It is a typical drawback of this
kind of solutions. For instant, it has been mentioned in Alexandrov and Goldstein (1993) that the same
situation appears in the case of flow through infinite converging channels, for example in the solution given
in Shield (1955). Moreover, for any value of the characteristic radius R it is possible to choose the constant
of integration in the solution of Eq. (14) such that the condition (19) is satisfied for 0 6 r 6 R, if A < 0. The
latter condition is compatible with the aforementioned condition A < A1.
4. Velocity solution

The boundary conditions (6) and (7) require that the velocity uh is independent of r at h = h0 and h = hp,
and that the velocity ur is independent of r at h = h0. Therefore, it is reasonable to assume that the velocity
components are independent of r. Then, the incompressibility equation (3) transforms to
ur ¼ � 1

2

duh
dh

þ uh cot h
� �

ð20Þ
It is convenient to use w as the independent variable instead of h. Then, in particular,
duh
dh

¼ duh
dw

dw
dh

and
d2uh
dh2

¼ d2uh
dw2

dw
dh

� �2

þ duh
dw

d2w

dh2
ð21Þ
where the derivatives dw/dh and d2w/dh2 are the known functions of w due to Eq. (13) and its solution.
Using (20) and (21) the boundary condition (7)1 can be rewritten in the form
duh
dw

dw
dh

þ uh cot hp ¼ �2U cos hp ð22Þ
at w = wp where wp is the value of w at h = hp. Substituting (20) into (4), with the use of (21), gives the fol-
lowing homogeneous linear second-order ordinary differential equation for uh
c2
d2uh
dw2

þ c1
duh
dw

þ c0uh ¼ 0 ð23Þ
where
c2 ¼
B2
1ðcos 2wþ sin/Þ

8sin2/

c1 ¼
B1 cot hðcos 2wþ sin/Þ2

4 sin/
þ B2

4sin2/sin2h
� B1 sin 2wðcos 2wþ sin/Þ

4 sin/

c0 ¼
cot h sin 2wðcos 2wþ sin/Þ2

2
� B1ðcos 2wþ sin/Þ � cos 2hðcos 2wþ sin/Þ3

2sin2h

B1 ¼ Acos2/� sin/ sin 2wð1� sin/Þ cot h� sin/ð3 cos 2w� 1� sin/ cos 2wþ 3 sin/Þ

B2 ¼ sin2/ð1� sin/Þ sin 2wðcos 2wþ sin/Þ2 þ B2
1 sin 2wsin

2h

� B1 sin/sin
2hðcos 2wþ sin/Þ½ð1� sin/Þ cos 2w cot hþ ðsin/� 3Þ sin 2w�

ð24Þ
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Here h should be excluded by means of the solution to Eq. (13). It follows from (23) and (24) that w = ww is
a regular singular point of Eq. (23). Expanding the coefficients of Eq. (23) in a Taylor series in a vicinity of
the singular point gives
c2 ¼
cos3/½cot h0 sin/ðsin/� 1Þ þ cos/ðAþ sin/Þ�2

4sin2/
ðw� wwÞ

c1 ¼
cos3/½cot h0 sin/ðsin/� 1Þ þ cos/ðAþ sin/Þ�2

4sin2/

c0 ¼ �2cos2/½cot h0 sin/ðsin/� 1Þ þ cos/ðAþ sin/Þ�ðw� wwÞ

ð25Þ
to leading order. Substituting (25) into (23) it is possible to arrive at the indicial equation in the form
aða� 1Þ � a ¼ 0 ð26Þ
Then, one of the linearly independent primitive solutions of Eq. (23) is
u1 ¼
X1
n¼0

anðww � wÞnþ2
; a0 6¼ 0 ð27Þ
The second primitive solution can be found by means of a standard procedure with the use of the solution
(27) to give
u2 ¼
X1
n¼0

bnðww � wÞn þ lnðww � wÞ
X1
n¼0

gnðww � wÞnþ2
; g0 6¼ 0 ð28Þ
The general solution to Eq. (23) is
uh ¼ C1u1ðwÞ þ C2u2ðwÞ ð29Þ

It is possible to show that it is necessary to put C2 = 0. The shear strain rate nrh contains the term dur/dh or,
according to (20), d2uh/dh

2. Therefore, Eqs. (16) and (21) show that the contribution of the solution (28) to
the value of nrh in a vicinity of the surface w = ww contains, for example, a term of order
nrh ¼
E

h0 � h
þ � � � ð30Þ
where E is independent of h. Since the shear stress rrh = O(1), it follows from (30) that the work rate, W,
contains a term of order O[(h0 � h)�1] and, therefore,
Z hp

h0

W dh ! 1 ð31Þ
showing that the solution (28) has no physical sense. Thus it is necessary to put C2 = 0 in (29) such that
uh = C1u1. It is obvious that the solution (27) satisfies the boundary condition (6) at any a0. The value
of a0 and hp can be found from the boundary conditions (7)2 and (22) at any given A satisfying the condi-
tion A < A1.

In order to perform calculations near the singular point, substitute the first two terms of the solution (27)
and the representation (25) into (23). Collecting the coefficients of like powers of (ww � w) gives
a1 ¼
4 tan/½sin 2/� ð4� AÞ cos/� 2 cot h0 sin/ð1� sin/Þ�

3½cos/ðAþ sin/Þ � cot h0 sin/ð1� sin/Þ� a0 ð32Þ
In a narrow layer ww 6 w 6 wd = (1 � d)ww, where d � 1, the solution is approximated by the first two
terms of (27) where a1 is excluded by means of (32). In the interval wd 6 w 6 wp the solution should be
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found numerically, guessing the value of a0. Then, an iterative procedure should be used to find a0 and hp
from the boundary conditions at h = hp. Note that hp is the known function of wp due to the solution to Eq.
(13).

The value of the strain rate intensity factor introduced in Alexandrov and Richmond (2001) may be of
some interest for applications. This factor, D, has been defined as the coefficient of the singular term in the
expansion
neq ¼
Dffiffi
s

p þ o
1ffiffi
s

p
� �

ð33Þ
where neq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þnijnij

p
is the equivalent strain rate, nij are the components of the strain rate tensor and s

is the distance from the friction surface. In the case under consideration s = r(h0 � h). Since nrh ! 1 and
the other strain rate components are finite as w ! ww,
neq �
2ffiffiffi
3

p nrh ð34Þ
as w! ww. Using (27), (16) and (32) the shear strain rate can be calculated and then substituted into (34) to
show that the equivalent strain rate follows the inverse square root rule (33) in the vicinity of the friction
surface and to find the strain rate intensity factor in the form
D ¼ D1ffiffi
r

p ð35Þ
where
D1 ¼
ffiffiffi
3

p
ja1jC

ffiffiffiffi
C

p

8
ð36Þ
Here a1 should be excluded by means of (32). The rule (33) is also valid in plane-strain solutions based on
the double-shearing model (Pemberton, 1965; Marshall, 1967; Alexandrov and Lyamina, 2002, 2003).
5. Plastic work rate

It is necessary to check that the plastic work rate is positive, rijnij > 0. Using (8) and expressing the strain
rate components through the velocity components leads to the following inequality:
X ¼ ð1þ cos 2wÞ duh
dh

� uh cot h
� �

þ sin 2w
d2uh
dh2

þ duh
dh

cot h� uhcot2h
� �

< 0 ð37Þ
This inequality can be checked numerically once the solution to Eqs. (13) and (23) has been found.
6. Numerical example

With no loss of generality, it is possible to put U = 1. A typical angle of internal friction is / = p/6. It is
also assumed that h0 = p/6. Then, it follows from (15) that A1 = 0 and from (19) that the minimum value of
q/c at the friction surface is 2=

ffiffiffi
3

p
. Therefore, the solution is valid at A < 0. To satisfy the condition that

rhh < 0 on the friction surface at r 6 R, it is necessary to put Q > lnð2=
ffiffiffi
3

p
Þ at w = ww, as follows from

(12). Fig. 3 shows the dependence of the orientation of the major principal stress in a meridian plane on
h at different A obtained from Eq. (13). To illustrate the variation of the stress components with h, Eq.
(14) has been solved with the boundary condition Q = ln3 at w = ww. Then, the stress components have
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been calculated by means of (8)–(10) and (12). The dependence of the stress components on h at r = R is
depicted in Figs. 4–7 (solid lines). Having the w distribution, Eq. (23) has been solved for uh and, then, ur
has been found by means of (20). The solution to Eq. (23) also determines the orientation of the rigid/plas-
tic boundary, hp, and, with the use of (35) and (36), the strain rate intensity factor. The variation of hp with
A is depicted in Fig. 8. The dashed lines in Figs. 4–7 correspond to the rigid plastic boundary. Note that
even though the stress solution is extended into the plastic zone without violating the equilibrium equations
and the yield condition, it is not extended over the entire rigid zone. Therefore, the solution obtained is not
complete in the sense that it is unknown if a statically admissible stress field exists in the entire rigid zone.
Such a drawback is typical in solutions of this kind (for example, Durban and Fleck, 1992). The dependence
of the strain rate intensity factor on r is obvious from (35). Therefore, Fig. 9 shows the variation of D1 with
A. The dependence of the velocity components with h within the plastic zone at different A is presented in
Figs. 10 and 11. Finally, the value of X has been calculated according to (37). The calculation has demon-
strated that the plastic work rate is positive in the case considered.
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7. Conclusions

A new semi-analytical solution has been obtained for axisymmetric penetration of a rigid cone into plas-
tic medium obeying the double-shearing model. As in other similar problems, not all constants are deter-
mined by the boundary conditions and the normal stress is not compressive on a part of the friction surface.
The solution develops the same type of singularity in the vicinity of the maximum friction surface as plane-
strain solutions based on the double-shearing model (Alexandrov and Lyamina, 2002) and solutions of clas-
sical plasticity (Alexandrov and Richmond, 2001). In particular, in the case of steady penetration of a rigid
cone into perfectly plastic materials the singular velocity fields have been found by Fleck and Durban
(1991) and Durban and Fleck (1992). Nevertheless, it is important to mention that not all models of pres-
sure-dependent plasticity lead to singular solutions of the type obtained (Alexandrov, 2003). Also, using
other constitutive laws it is possible to arrive at quite different behavior of solutions near maximum friction
surfaces. An example is given in Fleck and Durban (1991) where, in the case of power-law viscous solids,
sticking has been obtained at the maximum friction surface. Some general results on the solution behavior
of rate-dependent and hardening, pressure-independent plastic materials near maximum friction surfaces
are given in Alexandrov and Alexandrova (2000a,b) and Alexandrov et al. (2000).

Numerical results illustrate the variation of stress and velocity with the angular coordinate. An asymp-
totic analysis of the solution near the friction surface has been used to solve the differential equation (23)
and to extract the strain rate intensity factor.
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